Power Spectral Analysis of a Multiscale Chaotic Dynamical System
نویسنده
چکیده
In this paper, power spectral analysis of deterministic multiscale chaotic dynamical system is presented. The system is obtained by coupling two versions of the well-known Lorenz (1963) model with distinct time scales that differ by a certain time-scale factor. This system is commonly used for exploring various aspects of atmospheric and climate dynamics, and also for estimating the computational effectiveness of numerical schemes and algorithms used in numerical weather prediction, data assimilation and climate simulation. The influence of the coupling strength parameter on power spectral densities and spectrogram is discussed. Key-Words: Dynamical System, Deterministic Chaos, Power Spectral Density, Climate Modeling
منابع مشابه
Chaotic dynamic analysis and nonlinear control of blood glucose regulation system in type 1 diabetic patients
In this paper, chaotic dynamic and nonlinear control in a glucose-insulin system in types I diabetic patients and a healthy person have been investigated. Chaotic analysis methods of the blood glucose system include Lyapunov exponent and power spectral density based on the time series derived from the clinical data. Wolf's algorithm is used to calculate the Lyapunov exponent, which positive val...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملNonlinear dynamic of the multicellular chopper
In this paper, the dynamics of multicellular chopper are considered. The model is described by a continuous time three--dimensional autonomous system. Some basic dynamical properties such as Poincar'e mapping, power spectrum and chaotic behaviors are studied. Analysis results show that this system has complex dynamics with some interesting characteristics.
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کامل